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A STUDY OF SLANT WEIGHTED TOEPLITZ
OPERATORS IN CALKIN ALGEBRA

GOPAL DATT AND NEELIMA OHRI

ABSTRACT. We describe some structural properties of a k*"-order slant
weighted Toeplitz operator U,fyq5 (k > 2) on L*(B) with ¢ € L>=(8). The
study of this operator and its counterpart on H?(f) is also extended in
reference to the Calkin algebra.
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1. INTRODUCTION AND PRELIMINARIES

M.C. Ho [7], in the year 1995, introduced the notion of a slant Toeplitz op-
erator on L? (= L?(T), where T denotes the unit circle in the complex plane)
with the property that its matrix with respect to the standard orthonormal
basis could be obtained by eliminating every alternate row of the matrix

o0
of the corresponding Laurent operator. If ¢ = > ape, € L®(T) with
n=—o00
an = (¢, en), the n''-Fourier coefficient of ¢, then the matrix of the slant
Toeplitz operator induced by ¢ with respect to the standard orthonormal
basis {e, }nez (Z denotes the set of integers) of L? is given by

a_1 af2 a_3

et "

az ap aj

Equivalently, slant Toeplitz operators on the Hilbert space L? are defined
as Sy = WM, for ¢ € L>(T), where Wea, = e,, Weap1 = 0 for each
integer n and My is the Laurent operator on L? induced by the symbol
¢. The slant Toeplitz operators are a particular case of Ruelle operators,
which play a vital role in ergodic theory. Also, the spectral properties of
slant Toeplitz operators find applications in the theory of wavelets (see [6],
[11]). For example, L. Villemoes [12] associated the spectral radius of a slant
Toeplitz operator with the Besov regularity of solutions of the refinement
equation.

This research is supported by UGC research grant (F.No.8-4(194)/2015(MRP/NRCB))
to the first author and DST research grant (DST/INSPIRE/03/2014/000442) to the sec-
ond author.
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The underlying spaces in these studies are the usual Hardy spaces H? and
the L? spaces. An important direction of study emerged with the work of
R.L. Kelley [8], who brought forth the notion of weighted sequence spaces
H?(B) and L?(3). These spaces carry their importance because for particu-
lar values of 3, they coincide with Hardy space, Dirichlet space and Bergman
space (see [10]). Shields [10] made a systematic study of the Laurent opera-
tor on L?(/3) while Lauric [9] studied a particular case of weighted Toeplitz
operators on H?(3). These studies and various applications of slant Toeplitz
operators motivated the introduction of the classes of slant weighted Toeplitz
operators and k'"-order slant weighted Toeplitz operators on L2(f) (see [2],
3).

Further, in 1982, Barria and Halmos [4], characterized the set of essential
commutant of the forward unilateral shift operator and this set is referred to
as the set of essentially Toeplitz operators. The class of k*-order essentially
slant Toeplitz operators, characterized as the solution T of the operator
equation M, T — TM_» = K for some compact operator K on L?, was
introduced and studied in [1]. The study in this direction motivates us to
extend the study of slant weighted Toeplitz operators to the operators which
behave essentially in the same manner as these operators do. We introduce
the classes of essentially k'"-order slant weighted Toeplitz operators and
essentially compressed k'-order slant weighted Toeplitz operators on L?(3)
and H?(p3) respectively and study their properties.

Let us begin with the brief descriptions of the underlying spaces used in
the paper. The symbol C denotes the set of all complex numbers. The

space L%(3) consists of all formal Laurent series f(z) = 3. an2", a, € C,
nez

(whether or not the series converges for any values of z) for which || f H% =
> \an\2/3n2 < o0, where 8 = {B,}nez is a sequence of positive numbers
NneL
with 5o =1, r <ﬁﬁi <1forn>0andr</jﬁ" <1 for n <0, for some
r > 0. This assumption on f is taken throughout the paper.

L?*(B) is a Hilbert space with the norm ||+ || induced by the inner product

<f7 g> = Zan 5nﬁnQa
neL
for f(z) = > anz", g(z) = > bpz™. The collection {e,(z) = 2"/Bn}tnez
neZ neZ
forms an orthonormal basis of L?(3).

The collection of all f(z) = Z apz" (formal power series) for which

I1£11% = Z lan|?B,2 < o0, is denoted by H?(3) and is a subspace of L?(j3).

The symbol L>(3) denotes the set of formal Laurent series ¢(z) = Y anz"
neZ

such that ¢L?(B) C L*(B)

c||f|l for each f € L?(B). For ¢ € L>°(B), define the norm ||¢||o as

Illoo = inf{c > 0 [¢fll5 < c| flls for each f € L*(8)}.

L*>(p) is a Banach space with respect to || - [|oo. H*(8) refers to the set
of all formal power series ¢ such that ¢ H*(8) C H?(3). We refer to [10],
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as well as the references therein, for the details of these spaces. Wherever
k appears in the paper, it refers to an integer > 2. For a given Hilbert
space H, the symbols B(H) and (H) denote the sets of all bounded linear
operators and of all compact operators on H. The symbol o,(T) the point
spectrum of an operator 1", while ® denotes the empty set.

2. STRUCTURAL PROPERTIES

A Kkt-order slant weighted Toeplitz operator U,f s (see [3]), induced by
¢ € L>(B), is an operator on L?(3) defined as U£¢ = W'k,]Wg, where W, is
the operator on L?(/3) given by

/fk&cm(z) if n = km for some m € Z

Wien(z) =
ken(2) {0 otherwise
and M (f is the weighted Laurent operator on L?(3) induced by ¢ € L®(f).
The second-order slant weighted Toeplitz operator Ug 618 nothing but the
slant weighted Toeplitz operator Sg on L*(B) (see [2]).

U,’f¢ is a bounded linear operator on L?(3) with |\U,f¢|| < [Plloo- If

o0 o0

o(z) = 3. apz", then for each integer j, U,f¢ej = % > kn—jPnen.

n=—oo n=—oo
Also, the matrix [\; ;]; jez of U,f¢ with respect to the standard orthonormal
basis {e,(2) = 2"/Bn tnez of L?(B) satisfies
Biv1 Bj

1 Nt ok =
() i+1,54+ /7)2' Bj—f—k 1,7

where \; ; = <U,‘f¢cj, ci>, for each i,j € Z. However, we can find bounded

operators on L2(3) other than k''-order slant weighted Toeplitz operators

having the matrix structure satisfying (1). Following is an example.
Example 1. Consider the sequence 8 = {8, }nez given by 8, = 2lnl for

&)
each n € Z. Define a formal Laurent series ¢(z) = > a,2", where a,, =
n=—00
—5 ifn > 0 and a, = 0 otherwise. Then, ¢ is analytic in the domain || < 2

-1
and is bounded as well. Also, |[MZ|| = sup% =2and | M|t =

inf % = % This provides that ¢ is bounded and analytic in the annulus
||]\/[;;871||’1 < |z] < |[M?| and hence on applying [10, Theorem 10°(vii)(b)],
we get that ¢ € L>().

Define T on L?(B) as T = M(fWk. Then T is a bounded operator on
L?($3) and for each n € Z,

ﬁi > al—mBie;  if n = km for some m € Z
n

Te, = €

0 otherwise.
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The matrix of T, [a; ;)i jez, with respect to the orthonormal basis {e,(z) =
2"/ Bn}nez is given as

J

%ai,m if 7 = km for some m € Z
Qij = .
0 otherwise.

which satisfies the condition (1). Let, if possible, T = Ukﬁw for some

P(z) = > epz™ € L®(B). Then, Tegy, = U,fwekm for each integer m,
nez ’
which provides that a;_,, = cg;_gm for each integer I and m. Thus, we con-

clude that cx; = a; if I > 0 and ¢; = 0 otherwise. Hence, ¥(2) = Y ¢,2" =

nel
=S —1)n
S cen2® = 3 a2 Now for eg € L2(B), eg = . %ekn, which
n>1 n>1 n=1
© -_— n
does not belong to L?(3) since Hq/}eoH% = > (2(:21> )2, which is not con-

n=1
vergent. Hence ¢ ¢ L°°(3). This contradicts our assumption and hence T
can’t be a k-order slant weighted Toeplitz operator on L?(j3).

It is important to note that if the sequence § is such that {%}nEZ is
bounded, then the only bounded operators on L?(3) satisfying the condition
(1) are the k*-order slant weighted Toeplitz operators [3].

As we know that in the case when 8 is a bounded sequence, the space
H?(j3) coincides with the Hardy space (see [10]), it is important to ascertain
if the sequence 3, under the assumption of boundedness of {%}nez, is
bounded. We find that 8 may or may not be bounded. For example, 3 =
{Bn}nez defined as 3, = y/|n| + 1 for each n € Z is a unbounded sequence
while 8 = {Bn}nez defined as By = 1 and f,, = 2 for each n € Z\{0} is a
bounded sequence, both satisfying the requisite condition.

Theorem 2.1. Let m > 2 be an integer such that {%}neZ is bounded.
The adjoint Uf’(; of a kt"-order slant weighted Toeplitz operator U,fq5 s a
mth-order slant weighted Toeplitz operator if and only if ¢ = 0.

Proof. Let, if possible, U, kﬂ Tb be a m!-order slant weighted Toeplitz operator.
Then,

Biv1 Bj
(2) (UZ5eiemseivr) = == =ZL—(Urej, ei)
’ Bi ﬁj+m ’
.. & B x
for each i,j € Z. Let ¢(z) = _Z anz" € L*(B), then Uy je; = B; _Z
n=—oo n=—oo
Ekj,ng—’; for each j € Z. Hence, equation (2) provides that @y;j_; = (%%)2

Gyj—i+km—1 for each i, j € Z. Therefore, we obtain that
(3) 51’ — 1671_2( ﬂmn

2—
(k1) 44>
»Bn—i) n(km—1)+1i
0 <i<km-—2, for each n € Z. But ¢ € L¥(B) C L*(3), so we have
o0 o0
S o Jan? < Y Janl?*8n? < co. Thus, a, — 0 as n — oo. This, together

n=—oo n=—oo

with boundedness of {ﬁlg;" tnez and the fact that r < ﬁf_:l <1forn >0,
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for some r > 0, helps us to conclude that ag = a1 = -+ = agym—o = 0. As a
consequence, equation (3) yields that a,, = 0 for each n € Z. Hence ¢ = 0.
The converse is straight forward. O

Let 8 = {Bn}nez be such that {%}nez is bounded. Then, some imme-
diate consequences of the above theorem are the following.

Corollary 2.2. U,ff/) is a k' -order slant weighted Toeplitz operator if and
only if p = 0.

Corollary 2.3. The only self adjoint k" -order slant weighted Toeplitz op-
erator U ,f P s the zero operator.

Once we put k = 2 in Theorem 2.1, we obtain the following result, which
has also been proved in [2].

Corollary 2.4. The adjoint of a slant weighted Toeplitz operator is a slant
weighted Toeplitz operator if and only if ¢ = 0.

We recall a result of [5, Theorem 3.2], which states that if the sequence
B is such that {%}nEZ is bounded, then the only compact k**-order slant
weighted Toeplitz operator is the zero operator. Since every Hilbert-Schmidt
operator is compact, the next theorem is obtained without any extra efforts.

Theorem 2.5. Let § be such that {%ﬂ Ynez is bounded. The k' -order slant

weighted Toeplitz operator U,f(z) on L?(B) is Hilbert-Schmidt if and only if
¢ =0.

We would like to add here that once we drop the restriction of bound-
edness of {%L:}nEZ; we are able to ensure the existence of non-zero k-

order slant weighted Toeplitz operators on L?(3) which are Hilbert-Schmidt
and hence compact also. For example, consider the space L?($) with the
sequence 3 such that 8, = 2" for each n € Z. Let ¢ = ag, where

2
0 # ap € C. Then, ¥ [|UYe513 = laol X [%’* = laol® ¥ soetmmr =
JEZ neZ "kn nez

= &, 2(k-1) e
\a0|2( > 2_%%1)” + E:O 22(k‘+1)'ﬂ) = |a0|2ﬁ which is finite, so that
o n=

U,’i » 18 a non-zero Hilbert-Schmidt operator on L2(B3).
Similarly, we can see that if 3 is defined as above, each U kﬁ ol E€EZLisa

non-zero Hilbert-Schmidt operator on L?(3).

Next, we investigate some isometric and normal k**-order slant weighted
Toeplitz operators on L?(f). We present here below an example of a k-
order slant weighted Toeplitz operator which is neither an isometry nor a
normal operator.

Example 2. Consider the sequence 3 defined as

1 ifn<o0
,Bn: .
n+1 ifn>1.

Then, r < 5’3” <1lfornm>0andr < Bn glforngo,forr:l.
n+1 Bn—1 2

Let ¢(z) = 22. Then ¢ € L>®(3). Consider the k'"-order slant weighted
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Toeplitz operator U, ;f b induced by ¢. Then, the structure of U,’f " provides
0 itk>3
2e1 ifhk=2

Therefore, ||U ,;8 €0/l # |leol[s and hence this operator is not an isometry.

P L X
that Uk,(ﬁeg =% § GknBrnen =
0o

o0
Also, Uﬁz)eg = Ao nzoo angt = ag% = e_o and thus the operator under
consideration is not normal.

In fact, the k*"-order slant weighted Toeplitz operator U,f » cannot be
an isometry if the inducing symbol ¢ € L*°(p) is of the type ¢(z) =
k=1 oo .

S5O apnsiz®™ ), where ag,1; = 0 for each n, for some 0 < i <k — 1.
i=0 n=—o00

Remark 1. Let ng be a fixed integer and ¢ € L*°(3) be such that

k=1 _
#(2) = 3 apngri 250F where |ag4:| = 1 for each i = 0,1,--- ,k — 1.

=0
Then, a necessary condition for U 5 s to be an isometry is that S, = frn_1 =
= ﬂkn—(k—l) = /))7l+7lo for each n € Z.

Proposition 2.6. The k*-order slant weighted Toeplitz operator U,’f_d) on
L?(p) induced by the Laurent polynomial ¢(z) = a_12~ ' +ag+a1z is normal

if and only if ¢ = 0.

Proof. Let U,§¢, where ¢(z) = a_12 ' +ag+a1 2, be normal. Then, ||U£¢ej||ﬁ

= HU,CB;ejHﬂ for each integer j. In particular, for ;7 = 0, this provides that
o0

o0
S aen?8:2 = S |E_n|2515. This in turn yields that a; = a_; = 0.
n=-—00 n=—00 "
Similarly for j = 1, we obtain that ap = 0. Hence ¢ = 0. The converse is

trivially true. O

We conclude this section with the following information about the k-
order slant weighted Toeplitz operators.
Theorem 2.7. Let ¢ € L°°(B3) be such that ¢(z*) € L>=(B). Then, {0} U
UP(U]?’qﬁ) = O-P(U]f’(z,(zk))'

Proof. Let 0 # A € 0,(U; ). Then there exists 0 # f € L2(8) such that
Up of = Af. That is, WM} f = Af. Hence, M f # 0 and

U?

By — B B a8 15}
k@(zk)(M¢f) = Wkﬂf¢(zk)ﬂ'[¢ f= M, WkM¢f

= MJ(Af) = MM f).

Hence, \ € ap(U£¢(zk)). Conversely, let 0 # p € ap(U,f¢(zk)). Then there ex-
ists a non-zero vector g € L?(3) such that U]f¢(zk)g = pug. Hence, Wk]\[(f(zk)g
= ]Wngg = ug. Therefore, Wyg # 0 and U}z(b(Wkg) = Wk(U£¢(Zk)g) =
1w(Wig). Hence, p € Up(U,§¢). Since 0 always belongs to Up(Ulf,d)(l’“))’ the
result follows. (]
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3. OPERATORS IN CALKIN ALGEBRA

If we impose the condition of boundedness of {%ﬂ" tnez on 8, then the
E-order slant weighted Toeplitz operators on L?(/3) are characterized as
the solutions X of the operator equation MPx = X]\Ifk [3]. It is worth
mentioning here that dropping the boundedness of {%}HEZ leads the char-
acterization to fail. For, the operator T' = Mng on L?(3) (as defined in

Example 1), satisfies the operator equation MPT = T]\/ffk, although T is
not a k"-order slant weighted Toeplitz operator on L%(3).

We carry forward the study of k*'-order slant weighted Toeplitz operators
in the Calkin algebra B(L?(3))/K(L%(3)). Henceforth, we assume that the
sequence f is such that {%}nez is bounded. Let us define such operators
formally.

Definition: A bounded linear operator X on L?(f3) is said to be an essen-
tially k*"-order slant weighted Toeplitz operator if it satisfies the operator
equation

MPX - XM), =K,

for some compact operator K on L2(f).

We denote the set of all essentially k*-order slant weighted Toeplitz op-
erators on L?(3) by k-ESWTO(L?(8)). The following properties are imme-
diate from the definition.

Proposition 3.1. --ESWTO(L?*(3)) N K(L*(B)) = K(L*(B)).

Proposition 3.2. k-ESWTO(L*(B)) is a norm-closed vector subspace of
B(L*(8))-

Remark 2. Since the zero operator on LQ(/S) is a compact operator,
every k'"-order slant weighted Toeplitz operator on L?(f) belongs triv-
ially to the set k-ESWTO(L?*(3)). In fact, if T is any compact pertur-
bation of a k'"-order slant weighted Toeplitz operator on L?(f3), then T €
k-ESWTO(L?(B)).

Theorem 3.3. Let k1 and ko (both > 2) be two integers. If A € ki-
ESWTO(L?(B)) and B € ky-ESWTO(L?(B)), then AB € kiky-ESWTO

(L*(8))-

Proof. Let A € ki-ESWTO(L*(B)) and B € ko-ESWTO(L?*(3)). Then,
MJA — AMY, € K(L*(8)) and MYB — BMY,, € K(L*(8)). A simple
computation shows that
M?(AB) — (AB)M",,, = (MP A)B — A(BM, ,.,)
= (M{A)B — A(B(M},)*)
=AM, B — AMP(B(M’,))" 1) + Ky
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=AM, B — AM,(B(M,)"'~2) + K,

=AM, B— AM, B + K,
= Kkla

where I; € K(L?*(B)) for each 1 < i < kq. This yields that AB € kiko-
ESWTO(L%(B)). O

Now we find a condition for the product of two essentially k**-order slant
weighted Toeplitz operators to be an essentially k'-order slant weighted
Toeplitz operator.

Theorem 3.4. A necessary and sufficient condition for the product of two
essentially k'"-order slant weighted Toeplitz operators A and B to be an
essentially k' -order slant weighted Toeplitz operator is that A(M’f,c — ]MZB)B

is a compact operator on L*(3).

Proof. Let A, B € k-ESWTO(L*(8)). Suppose MYA — AM', = Ki and

M!B - B]V[f,c = Ko, where K1, Ky € K(L*()). A simple computation
shows that

MP(AB) — (AB)M), = (MPA)B — A(BM),)
= (AM/, + K1)B — A(M{B — K»)
=AM’ — MP)B + K,
where K3 = K1B + AKs € K(L?(3)). This provides that AB € k-ESWTO
(L(B)) if and only if A(M5, — MY)B € K(L*()). O

To check if the set k- ESWTO(L?(3)) forms an algebra or not, we raise the
question whether k-ESWTO(L?(/3)) contains two non compact operators A
and B such that A(]\/[fk - Mf)B is a non compact operator. The answer is
in positive as is justified by the following example.

Example 3. Let A be an operator on L?(3) defined as

e1 ifn=20
Ae,, = 557:11 em if n=km-1 for some m € Z ,
0 otherwise

where {e,(2) = 2"/Bu}nez is the standard orthonormal basis of L?(5).
If K on L?(3) is defined as Ke, = e, if n = 0 and Ke, = 0 otherwise,
then it is easy to see that A = Wk]\/ff + K. Hence,

MPA — AMY, = MP (W MP + K) — (WieMP + K)M,
= (MPWME — Wi MPME) + K,

= (WeM5MP — W MPMY,) + K
= Kla
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where K1 = MK — KMfk € K(L%*(B)). Thus A is an essentially k-
order slant weighted Toeplitz operator on L?(3). Also, A is not compact.
Let B = A. Then, A and B are both non-compact operators belonging to
the set k-ESWTO(L?(/3)). If we assume that A(Mfk — MP)B is compact,

then this implies that the operator W, M~ (M f ' MP YW M 5 s compact.

However, (Wka(Mfk —MP )Wka) en =
Bg-:leerl if n =k* — k — 1 for some p € Z

—g—:ep if n = k?p — 2k — 1 for some p € Z

0 otherwise.

Since {%}nez is bounded, there exists a real number M > 0 such that

% < M for each integer n. Also, % < 1 for each n > 0. Therefore,

Bn 1 Bn 1
T > 57 and T > 57 for each n > 1.
Now, the sequence {ej2, o1} converges weakly to 0 as p — oo. But

Bp Pip=2 __Bp > 1 for each p > 2. Hence, ||(IVkM7ﬁ(Mfk -

Bi2p-an1  Brhp-2)—1 Brp—2 — MZ
Mf)WkM'Zﬁ)ekzp_%_IHB # 0 as p — oo, which contradicts the compactness
of this operator.

The following theorem provides a sufficient condition for the product of
any two bounded operators on L?(3) to be an essentially k'*-order slant
weighted Toeplitz operator.

Theorem 3.5. Let A, B € B(L*(B)), then AB € k-ESWTO(L*(3)) if
either of the following conditions holds.

(a) A is in essential commutant of MY and B € k-ESWTO(L*(8)).
(b) A€ k-ESWTO(L?*(3)) and B is in essential commutant of Mfk

Proof. Let A, B € B(L2(B)) such that MYA — AM? = K, and M/B —
BM?, = K, where K1, Ko € K(L*(8)). In this case, MY (AB)—(AB)M, =
(AMP+ K1) B—A(M? B-K3) = K1 B+AK,. Hence, AB € k-ESWTO(L?(8)
). Similarly, we can prove the result when condition (b) holds. O

Our next result follows readily using the above theorem.

Proposition 3.6. Let ¢ € L(8) and A € k-ESWTO(L(8)). Then, M) A
and AM]] both belong to k-ESWTO(L*(B)).

Remark 3. The set k-ESWTO(L?*(3)) is not a self adjoint set, as can
be seen with the help of operator A = Wka + K (as defined in Example
3). It was proved that A € k-ESWTO(L?(B3)). However, if we assume that
A* € kESWTO(L%(3)), then M A* — A*]\/[f,c is a compact operator on
L*(3). Now,

MEA* — A*ME, = ME(MP W} + K*) — (MP*W; + K*)M,
= (MPMPW — MEWEME) + (MPK™ — K*MY,)
=T1 + Ky,
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where Ty = (MZMP*Wy — ME*WiMY,) and Ky = MYK* — K*M), €
2
K(L?(8)). Also, Tren = (252 ) ey, — (5 t)ey(an)1- Now, if Ty is

1 Br(k+n)—1
ﬁn

Bkn—l
hence ||[WiT1en||s = (%)2 4 0 as n — oco. This leads to a contradiction
to our assumption.

Towards the end, we focus our attention towards the study of the com-
pression of k**-order slant weighted Toeplitz operators in the Calkin algebra
B(H?(B))/K(H?(B)). Let V# denote the shift operator on H?(f3) such that

for each 7 > 0, Vﬁej = ﬁfﬁejﬂ and Tfk denotes the weighted Toeplitz
operator on H?(f3) induced by z*.
The compression of X of a kt*-order slant weighted Toeplitz operator

on L?(B) to H*(B) satisfies the operator equation X = Vﬂ*XTfk. We con-
sider the operators satisfying X — Vﬁ*XTfk € K(H?(j3)) and call these as
essentially compressed k"-order slant weighted Toeplitz operators.

0 ifn=0
e, ifn>1
(H?(B))), where I denotes the identity operator on H?(3). Hence, we can
equivalently define essentially compressed k"-order slant weighted Toeplitz
operators as those satisfying 72X — XTfk € K(H?(B)).

We denote the set of all essentially compressed k'*-order slant weight-
ed Toeplitz operators on H2(3) by k-ESWTO(H?(3)). It is trivial to see
that K(H?(3)) C k-ESWTO(H?(B)). Also, the compression of every k-
order slant weighted Toeplitz operator on L?(3) to H?(j3) belongs to k-
ESWTO(H?(B)).

For ¢ € L*™(3), let V,f s denote the compression of a k"-order slant

weighted Toeplitz operator U£¢ to H?(B). Then, TzﬁWk|H2(5) =vP, =

k,zk
Wi.T.

Using this observation, it is easy to see that if 7" is an operator on H?(3)
defined as T = W}, TP + K, where K is defined on H%(f) as Keg = e; and
Ke, =0if n > 1, then T is a non compact operator satisfying TZB TfTTfk €
K(H?(p)). Further, along the lines of computations made in Example 3 and
Remark 3, we find that 7%, 7% ¢ k-ESWTO(H?(j)).

With this, we can conclude that k-ESWTO(H?()) is a proper superset
of K(H?(B)) and is neither a self-adjoint set nor an algebra.

Following similar techniques as used in the case of essentially k"-order

slant weighted Toeplitz operators on L?(f3), we obtain the following infor-
mation about k-ESWTO(H?(3)).

)2e,, and

compact, the operator W1 is also compact. But W;,Tie, = (

Also, since T2VF*e, = . therefore TPVA* = [ (mod K

(a) The set k-ESWTO(H?(B)) is a norm-closed vector subspace of B
(H2(3)).

(b) Let ki, k2 be integers, both > 2. If A € ki-ESWTO(H?*(B)) and
B € ko-ESWTO(H?(3)), then AB € kiko-ESWTO(H?(B)).

(¢) A necessary and sufficient condition for the product of two essentially
compressed k'-order slant weighted Toeplitz operators A and B
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to be an essentially compressed k''-order slant weighted Toeplitz
operator is that A(Tfk — Tf))B is a compact operator on H?(j3).
(d) Let A, B € B(H?(j)), then AB € k-ESWTO(H?*(B)) if either of

the following conditions holds.

(a) A belongs to the essential commutant of 7 and B € k-ESWTO
(H2(5)).

(b) A € k-ESWTO(H?(B)) and B belongs to the essential commu-
tant of Tfk.

Next, we try to determine if an essentially compressed k"-order slant
weighted Toeplitz operator on H?(/3) can be an invertible operator on H?(8).
The following theorem helps us.

Theorem 3.7. Let F(H?(B)) denotes the set of all Fredholm operators on
H?(B). Then, k-ESWTO(H?*(B)) N F(H*(B)) = ®

Proof. Let A € k-ESWTO(H?(3)) be a Fredholm operator of index n.
Then, T2A = ATfk + K, for some compact operator K on H?(j3). The

index of the operator TP A is n-1, while the index of ATf; + K is n-k. This

implies that & = 1 which is absurd. Hence k-ESWTO(H?(3)) contains no
Fredholm operator. ]

Since every invertible operator is a Fredholm operator, the above theorem
helps us to conclude that k-ESWTO(H?(j3)) doesn’t contain any invertible
operator on H?(j3).
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